///////////////////////////////////////////////////////////////////// // "On the torsion of rational elliptic curves over sextic fields" // // Harris B. Daniels and Enrique González-Jiménez // ///////////////////////////////////////////////////////////////////// // 2/8/2018 - Magma 2.23 // Magma script related to Proposition 8 (j) //f1 is the j-map from X_0(3) to P1 taken from Zywina, On the possible images of the //mod l representations associated to elliptic curves over Q. //f2 is the j-map from X_{20} to P1 taken from Rouse, Zureick-Brown, Elliptic curves //over $\Q$ and $2$-adic images of Galois. F := FunctionField(Rationals()); f1 := 27*(t+1)*(t+9)^3*t^-3; //the j-map for X0(3) f2 := (-4*t^8 + 32*t^7 + 80*t^6 - 288*t^5 - 504*t^4 + 864*t^3 + 1296*t^2 - 864*t - 1188)/(t^4 + 4*t^3 + 6*t^2 + 4*t + 1); R:=PolynomialRing(Rationals(),2); g:=Numerator(Evaluate(f1,x)-Evaluate(f2,y)); assert IsIrreducible(g); C:=ProjectiveClosure(Curve(AffineSpace(R),g)); // assert Genus(C) eq 1; P := C![0,1,0]; E,map := EllipticCurve(C,P); assert Rank(E) eq 0; assert CremonaReference(E) eq "48a3"; T,mp := TorsionSubgroup(E); PTS := [mp(t) : t in T]; //Pull back the torsion points and add the presages to Set. Set := {}; PHI := map; for p in PTS do Set := Set join RationalPoints(p @@ PHI); end for; assert Set eq { C![-4/3, 7, 1], C![0, -1, 1], C![0, 1, 0], C![-3/4, -5, 1], C![-3/4, -1/2, 1], C![1, 0, 0], C![-4/3, -5/4, 1] }; /* Thus there are 4 non-sinqular points ([-4/3, 7, 1], [-4/3, -5/4, 1], [-3/4, -5, 1], [-3/4, -1/2, 1] ), singular point ( [0, -1, 1] ) and cusps at infinity ( [0, 1, 0], [1, 0, 0] ) */ //Check that the j-maps agree here. assert Evaluate(f1,-4/3) eq Evaluate(f2,7); assert Evaluate(f1,-4/3) eq Evaluate(f2,-5/4); assert Evaluate(f1,-3/4) eq Evaluate(f2,-5); assert Evaluate(f1,-3/4) eq Evaluate(f2,-1/2); //There are two j invariants they are 109503/64 and -35937/4 assert [Evaluate(f1,-4/3), Evaluate(f1,-3/4)] eq [ 109503/64, -35937/4 ]; //For each of these j-invariants from Zywina there are unique twists that have a //rational point of order 3. These curves have G_E(3) equal to 3B.1.1. Using the fine //models in Zywina, On the possible images of the mod l representations associated to //elliptic curves over Q, we compute each curve. At := -3*(t+1)^3*(t+9); Bt := -2*(t+1)^4*(t^2-18*t-27); A1 := Evaluate(At, -4/3); B1 := Evaluate(Bt, -4/3); A2 := Evaluate(At, -3/4); B2 := Evaluate(Bt, -3/4); E1 := EllipticCurve([A1,B1]); E2 := EllipticCurve([A2,B2]); //Sanity check that we entered the model correctly. assert #TorsionSubgroup(E1) eq 3; assert #TorsionSubgroup(E2) eq 3; //Check that we got the curves we claimed we did. assert CremonaReference(E1) eq "162d1"; assert CremonaReference(E2) eq "162a1"; //Compute the torsion subgroups of the elliptic curves over their 3-division fields //to see we do not get a point of order 4. P := PolynomialRing(Rationals()); f1 := x^6+3; f2 := x^6-3*x^5+5*x^3-3*x+1; K1 := NumberField(f1); K2 := NumberField(f2); EK1 := ChangeRing(E1,K1); EK2 := ChangeRing(E2,K2); T1 := TorsionSubgroup(EK1); T2 := TorsionSubgroup(EK2); //Check that both these curves have torsion (3,3) over the given sextic fields. assert IsIsomorphic(T1,AbelianGroup([3,3])); assert IsIsomorphic(T2,AbelianGroup([3,3]));